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Abstract

The nearest-neighbor concurrence and block–block entanglement of a period-
two XX chain with a transverse field h and a uniform long-range interaction I in
the z-direction are studied numerically. It is found that when I > 0, the nearest-
neighbor concurrence and block–block entanglement are both discontinuous
at the critical points, where the system undergoes first-order quantum phase
transitions. When the long-range interaction is weak

(
I < Ic1

)
, there are two

critical points hc1 and hc2 . Between these two points there is a critical region,
where the block–block entanglement SL ∼ log2 L. In one noncritical region
0 � h � hc1 , SL is equal to a non-zero constant while in the other noncritical
region h � hc2 , SL is always zero. Furthermore, the effect of periodicity on the
concurrence and block–block entanglement is discussed.

PACS numbers: 64.60.De, 75.10.Jm, 75.40.Cx

1. Introduction

As one interesting simple type of theoretical model, the one-dimensional spin- 1
2 chains, such

as the Heisenberg model, Ising model, XY model and so on, have been studied extensively
[1–4]. One of the most frequently studied properties of these systems is the existence of
quantum phase transitions (QPTs) at zero temperature [5]. A quantum critical point marks
a zero-temperature phase transition between different ground states of a many-body system
when we change certain parameters of the system.

Quantum entanglement, as one of the most remarkable traits of quantum systems, has
been studied extensively [6]. In the last decade, a great deal of efforts have been focused on
the relationship between quantum entanglement and QPTs [7–18]. There are two widely used
measures of entanglement for the spin systems. One is concurrence [7] which measures the
entanglement between two spins in the spin chain, and the other is block–block entanglement
(or von Neumann entropy) [8, 9] which measures the entanglement between a block of L
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contiguous spins and the rest of the chain. By using the concurrence, Osterloh et al found a
universal scaling behavior for the derivative of the entanglement of the uniform anisotropic XY
chain in the vicinity of the second-order QPT [10]. Afterward, it is found that the concurrence
is discontinuous at the first-order QPT point [11, 12]. By using the von Neumann entropy,
Vidal et al [9] studied the block entropy SL of L contiguous spins in the quantum Ising chain
in a transverse field. They found that SL is proportional to log2L at the critical point, while
SL is a constant in the noncritical region.

On the other hand, all of these systems mentioned above are either uniform or disordered
with nearest-neighbor or next-nearest-neighbor interactions. It is well known that the
properties of periodic spin systems can provide insight into the random spin systems
[19–23]. For an anisotropic XY model in a transverse field, it is found that there is only one
QPT point if the chain is uniform, but for a periodic or quasiperiodic chain the competition
between periodicity and anisotropy gives rise to more QPTs, and the QPTs are all of second
order [24–27]. If a uniform long-range interaction among the transverse components of the
spins is added to a uniform XX chain, the QPTs become first order [28]. If both periodicity
and long-range interaction are taken into account, the model will exhibit complex properties
[29].

In this paper, we will study how the competition between the long-range interaction and
periodicity affects entanglement. This paper is organized as follows. In section 2, we give
the model and the relevant formulae. In section 3, we give the numerical results and their
interpretation, and section 4 is a brief conclusion.

2. Model and formulae

We consider a one-dimensional XX model (S = 1
2 , N sites) with uniform long-range

interactions among the z components of the spins in a transverse field. The Hamiltonian
is given by [29]

H = −
N∑

n=1

Jn

(
Sx

nSx
n+1 + Sy

nS
y

n+1

) − h

N∑
n=1

Sz
n − I

N

N∑
n,m=1

Sz
nS

z
m, (1)

where Jn is the exchange coupling between nearest neighbors, h is a uniform transverse
magnetic field, and I is the strength of the long-range interaction. For the uniform
system, Jn = J while for the periodic case Jn depends on the site n periodically. In the
following, we study a simplest periodic case, i.e. the period-two case, in which, we can take
J2n+1 = J, J2n = αJ with 0 � α < 1 being the ratio of two nearest-neighbor interactions.

This model can be solved by using the Jordan–Wigner transformation [30] in combination
with the Gauss transformation and the steepest descent method [28, 29]. The energy spectrum
and the ground-state energy of the system are given by [29]

ε±
k (Mz) = (h + 2IMz) ± J

2

√
2α cos(2k) + α2 + 1 (2)

and

U(Mz) = −Mz(h + IMz) − J

2π

∫ ϕ

0

√
1 + α2 + 2α cos(2k) dk, (3)

respectively. Mz is the average magnetization and can be solved self-consistently from the
equation

Mz = 1

2
− ϕ

π
, (4)
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with ∂U
∂Mz

= 0 and ∂2U
∂M2

z
> 0. Here ϕ is given by

ϕ = 1

2
arccos

[( 2h+4IMz

J

)2 − α2 − 1

2α

]
, (5)

which is derived from ε−
k |k=ϕ = 0.

In what follows, we use concurrence and block–block entanglement to discuss the
entanglement in the ground states of the system.

2.1. Concurrence

Let ρmn be the reduced density matrix of a pair of spins m and n in the system. The concurrence
between spins m and n is defined as

Cmn = max{λ1 − λ2 − λ3 − λ4, 0}, (6)

where the quantities λ1 > λ2 > λ3 > λ4 are the square roots of the eigenvalues of the operator

Rmn = ρmn(σy ⊗ σy)ρ
∗
mn(σy ⊗ σy). (7)

The concurrence Cmn = 0 corresponds to an unentangled state, and Cmn = 1 corresponds to a
completely entangled state. For [ρmn, Sz] = 0

(
Sz = ∑

n Sz
n

)
the reduced density matrix ρmn

has the form

ρmn =

⎛
⎜⎜⎝

u+

w1 z∗

z w2

u−

⎞
⎟⎟⎠ . (8)

The matrix elements can be written in terms of the correlation functions and the average
magnetization Mz as

u± = 1
4

(
1 ± 4Mz + Gzz

mn

)
, w1 = w2 = 1

4

(
1 − Gzz

mn

)
, z = 1

4

(
Gxx

mn + Gyy
mn

)
, (9)

where Gzz
mn = 4

〈
Sz

mSz
n

〉
,Gxx

mn = 4
〈
Sx

mSx
n

〉
and G

yy
mn = 4

〈
S

y
mS

y
n

〉
. So we can easily find the square

roots of the eigenvalues of the operator Rmn:

λ1,2 = ±
√

u+u− (10)

and

λ3,4 = z ± w1. (11)

By taking gmn = 〈
c
†
mcn

〉
, the two-point correlations Gxx

m,n,G
yy
m,n and Gzz

m,n can be expressed
through Wicks theorem by the Jordan–Wigner transformation as

u± = 1
4 ± Mz + M2

z − g2
m,n, (12)

z = gm,n (13)

and

w1 = 1
4 − M2

z + g2
m,n. (14)

For the period-two case,

gm,m = Mz +
1

2
, (15)

g2m−1,2n = g∗
2n,2m−1 = 1

π

∫ ϕ

0

cos(2m − 2n)k + α cos(2m − 2n − 2)k√
1 + α2 + 2α cos 2k

dk, (16)
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Figure 1. The average magnetization Mz as a function of h. Here α = 0.5, J = 1.
The solid, dashed, dotted, dashed-dotted and dashed-dotted-dotted curves correspond to I =
0, 0.3, 0.5, 0.65 (≈ Ic1 ) and 1.064 (≈ Ic2 ), respectively.

and for m �= n

g2m−1,2n−1 = g∗
2n−1,2m−1 = g2m,2n = g∗

2n,2m

= − sin 2(m − n)ϕ

2(m − n)π
. (17)

2.2. Block–block entanglement

The entanglement between a block of L contiguous spins and the rest of the chain is defined as

SL ≡ −tr(ρL log2 ρL). (18)

Here ρL is the reduced density matrix for L contiguous spins. SL can be written as [9]

SL = −
L∑

n=1

[(1 − λn) log2(1 − λn) + λn log2 λn], (19)

where λn are the eigenvalues of the matrix

GL =

⎛
⎜⎜⎝

g1,1 g1,2 · · · g1,L

g2,1 g2,2 · · · g2,L

· · · · · · · · · · · ·
gL,1 gL,2 · · · gL,L

⎞
⎟⎟⎠ . (20)

Here gmn are also defined by equations (15)–(17).

3. Results and discussion

Throughout this section, we take J = 1 in calculations without loss of generality.

3.1. Concurrence

The numerical results of average magnetization Mz with different I are given in figure 1 [29].
For the period-two chain, the spins S2n and S2n+1 are not equivalent; therefore, the nearest-
neighbor concurrence C2n−1,2n and C2n,2n+1 are different. But they have similar behavior with

4
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Figure 2. The average nearest-neighbor concurrence C as a function of h. Here α = 0.5, J =
1. The solid, dashed, dotted, dashed-dotted and dashed-dotted-dotted curves correspond to
I = 0, 0.3, 0.5, 0.65 (≈ Ic1 ) and 1.064 (≈ Ic2 ), respectively.

respect to the parameters h and I. Therefore, we use the average nearest-neighbor concurrence
C = 1

2 (C2n−1,2n + C2n,2n+1) to study the entanglement [26]. Figure 2 shows the average
concurrence C as functions of h at different I.

It can easily be found that when the strength of the long-range interaction I = 0 (see the
solid lines in figures 1 and 2), corresponding to the period-two XX model in a transverse field,
there are two critical points at hc1 and hc2

(
hc1 < hc2

)
. For h � hc1 ,Mz = 0, the system is

in a maximally entangled state corresponding to C = Cmax. While for h � hc2 ,Mz = 1
2 , it is

in an untangled state corresponding to C = Cmin = 0. For hc1 < h < hc2 , 0 < Mz < 1
2 and

0 < C < Cmax, hc1 and hc2 mark two second-order phase transitions because on these two
critical points the function of Mz is still continuous.

For I > 0, the critical behavior of this system is more varied. There are two critical
values Ic1 and Ic2

(
Ic1 < Ic2

)
. For 0 < I < Ic1 , there are still two critical points hc1 and hc2

(see the dashed and dotted lines in figures 1 and 2), which both depend on the values of I
and α. At these two points, the system undergoes first-order QPTs and Mz is discontinuous.
For h = hc1 , we have Mz = Mt1

z and 0 with U(Mt1
z ) = U(0). And at h = hc2 , we have

Mz = Mt2
z and 1

2 with U
(
Mt2

z

) = U
(

1
2

)
. From figure 2, we can see that the concurrence is also

discontinuous. At h = hc1 , C = Cmax and Ct1 , whereas C = Ct2 and 0 at h = hc2 . M
t1,2
z and

Ct1,2 are also functions of I and α. As neither Mz nor C is continuous at the critical point hc1 or
hc2 , the corresponding QPTs are of first order. As I increases, the difference between hc1 and
hc2 decreases. When I goes beyond a critical value Ic1 but less than Ic2 , (see the dashed-dotted
lines in figures 1 and 2) hc2 = hc1 = hc, which means that there is only one critical point.
Here Mz = 0 and 1

2 while C = Cmax and 0. Similarly, at the critical point hc,Mz and C
are both discontinuous. So the corresponding QPT is also of first order. If I > Ic2 (see the
dashed-dotted-dotted lines in figures 1 and 2) no QPT occurs, and Mz = 1

2 while C = 0 for
any h.

Figure 3 gives the phase diagram with the curves of hc with respect to I [29]. In region 1
Mz = 0 while in region 2 Mz = 1

2 . In region 3, which is between the two lines, 0 < Mz < 1
2 .

This phase diagram can also be used to describe the behavior of C. In region 1, C = Cmax,
which corresponds to a maximally entangled state. In region 2, C = 0, which corresponds to an
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Figure 3. hc as a function of I. The squares and triangles correspond to hc1 and hc2 , respectively.

unentangled phase. And region 3 corresponds to an entangled state, in which 0 < C < Cmax.
Each transition across the solid line is of first order. But the transitions along the h-axis are of
second order. It is worth noting that the whole region 3 is critical.

These properties above of QPT are the result of competition between periodicity and
long-range interactions (and the transverse field). When 0 < I 	 Ic1 and the field is weak(
0 < h 	 hc1

)
, the effect of periodicity is dominant. The average magnetization Mz is always

zero. And the ground state is a maximally entangled state corresponding to Cmax. To see
the effect of periodicity, we consider a four-spin system with α = 0. It is found that, for
h < J

2 − I
4 and I < 4J

3 , the ground state is

1
2 (|↑↓↑↓〉 + |↑↓↓↑〉 + |↓↑↑↓〉 + |↓↑↓↑〉).

Every two spins connected by J are antiparallel with each other, which corresponds to Mz = 0
and C = C12+C23

2 = 1+0.5
2 = 0.75. In contrast, both long-range interactions and transverse

field always make spins parallel to each other along the direction of the field: |↑↑ . . . ↑〉
and correspond to an unentangled state. The competition between these two opposite effects
causes the phase transitions to occur at hc1,2(I > 0), which is less than the case in the absence
of long-range interactions (I = 0). And when I is very strong, spins may be outright parallel,
which causes the number of critical points to decrease from two to one. And if I is strong
enough

(
I > Ic2

)
all the spins are always parallel with each other, and no QPT will occur

irrespective of the transverse field h.
We have further calculated Mz (and C) with different α and found their critical behavior

to be similar because α (0 < α < 1) only effects on the values of hc1,2 and Ic1,2 . So here we
just show the results with α = 0.5 without loss of generality.

Next we take a look at another effect of periodicity on the concurrence. As we have
shown in figure 2, the maximum and minimum of C are both independent of the long-range
interaction I. Cmin is always equal to zero while

Cmax = 1
2 +

(
g2

12 + g2
23

)∣∣
ϕ= π

2
, (21)

which changes with α. For α = 1, corresponding to the uniform case, Cmax = 1
2 + 2

π2 ≈ 0.702
while for α = 0, Cmax = 3

4 . We also calculate Cmax at different α. The numerical results are
shown in figure 4. It is clear that the entanglement between two nearest-neighbor spins in

6
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Figure 4. Maximal average concurrence Cmax as a function of α with J = 1.

Figure 5. S2 of the period-two XX model with long-range interactions in a transverse field at zero
temperature. α = 0.5, J = 1. The solid, dashed and dotted curves correspond to I = 0, 0.3 and
Ic1 ≈ 0.65, respectively.

the periodic system is greater than that in the uniform system when both of them are in the
maximally entangled state.

3.2. Block–block entanglement

Concurrence is usually regarded as the entanglement between two spins while block–block
entanglement is used to measure the entanglement of a block spin with the rest of the chain.

Figure 5 gives the entanglement of the two spins and the rest part of the system S2

with α = 0.5 at different I. It shows that there are two critical points Ic1 and Ic2 . When
0 < I < Ic1 , S2 is discontinuous at two critical points hc1 and hc2 . When Ic1 < I < Ic2 , there
is only one critical point with hc1 = hc2 = hc, at which S2 is also discontinuous. And when
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Figure 6. S2 of the period-two XX model with long-range interactions in a transverse field at zero
temperature. I = 0.3, J = 1. The solid, dashed, dotted, dashed-dotted and dashed-dotted-dotted
curves correspond to α = 0, 0.1, 0.5, 0.7 and 1.0, respectively.

Figure 7. SL of the period-two XX model with long-range interactions in a transverse field at zero
temperature in the noncritical region as a function of L. I = 0.3, h = 0.004, J = 1. The solid,
dashed and dotted curves correspond to α = 0.5, 0.7 and 0.9, respectively.

I > Ic2 , S2 is always zero. We can see that S2 is a non-zero constant in region 1 of figure 3
and S2 = 0 in region 2 while S2 varies with h and I in region 3.

Figure 6 gives the curves of S2 with I = 0.3 at different α. It is similar to the nearest-
neighbor concurrence; in that S2 is only determined by α when h < hc1 and S2 = 0 when
h > hc2 . Here, the value of S2 in the uniform case is larger than that in the periodic case,
which is different from the behavior of nearest-neighbor concurrence.

As is known, the entanglement of a block with a chain SL in the critical region exhibits
a logarithmic divergence for L: SL = A log2 L + constant with A = 1

6 for the quantum Ising

8
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Figure 8. SL of the period-two XX model with long-range interactions in a transverse field at zero
temperature in the critical region as a function of log2 L. I = 0.3, h = 0.35 and J = 1. The solid,
dashed, dotted and dashed-dotted curves correspond to α = 0.5, 0.7, 0.9 and 1.0, respectively.

chain and A = 1
3 for the XX chain with no magnetic field. And SL is a constant in the

noncritical region for the two models [9]. In order to study the scaling behavior, mainly how
SL grows with the block size L in the period-two XX model with long-range interactions in
a transverse field, we calculate SL numerically. Figure 7 shows that in one noncritical region
(region 1 in figure 3) SL is a non-zero constant when the block is large enough. (It can easily
be shown that in region 2 of figure 3 SL is always zero.) And figure 8 shows that in the critical
region (region 2 in figure 3) SL ∝ log2 L and the slope A ≈ 0.3455 ∼ 0.3398 corresponds to
α = 0.5 ∼ 1.0. This result is in perfect agreement with the earlier result [9].

4. Conclusion

We have studied a period-two XX model with long-range interactions in a transverse field.
At zero temperature, the QPTs in this system are more complicated than those in the uniform
case. This property is the result of competition between periodicity and long-range interactions.
And the behavior of QPTs directly affects the nearest-neighbor concurrence and block–block
entanglement of the system. The concurrence takes its extremities not at the critical points
hc1,2 but in the intervals 0 � h � hc1 and h � hc2 . The derivative of the entanglement is not
existing at first-order QPT points, where the entanglement is discontinuous . The maximum
value of concurrence depends on the parameter α. SL ∼ log2 L in the critical region and a
constant in the noncritical region.
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